8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Физика и химия льда. Общие сведения

Свойства льда: строение, механические и физические свойства льда

Лед – это твердое вещество, находящееся агрегатном состоянии, которому свойственно иметь газообразную или жидкую форму при комнатной температуре. Свойства льда начали изучать сотни лет назад. Около двухсот лет тому назад ученые обнаружили, что вода – не простое соединение, а сложный химический элемент, состоящий из кислорода и водорода. После открытия формула воды стала иметь вид Н2О.

Строение льда

Н2О состоит из двух атомов водорода и одного атома кислорода. В спокойном состоянии водород располагается на вершинах атома кислорода. Ионы кислорода и водорода должны занимать вершины равнобедренного треугольника: кислород располагается на вершине прямого угла. Такое строение воды называется диполем.

Лед состоит на 11.2% процента из водорода, а остальное – это кислород. Свойства льда зависят от его химического строения. Иногда в нем присутствуют газообразные или механические образования – примеси.

Лед встречается в природе в виде немногочисленных кристаллических видов, которые устойчиво сохраняют свое строение при температурах от нуля и ниже, но при нуле и выше он начинает плавиться.

Структура кристаллов

Свойства льда, снега и пара совершенно разные и зависят от структуры кристаллов. В твердом состоянии Н2О находится в окружении четырех молекул, расположенных в углах тетраэдра. Так как координационная численность низкая, то лед может иметь ажурную структуру. Это отображается на свойствах льда и его плотности.

Формы льда

Лед относится к распространенным в природе веществам. На Земле есть следующие его разновидности:

  • речной;
  • озерный;
  • морской;
  • фирновый;
  • глетчерный;
  • грунтовый.

Есть лед, напрямую образующийся сублимационным путем, т.е. от парообразного состояния. Такой вид принимает скелетовидную форму (мы их называем снежинки) и агрегатов дендритного и скелетного роста (изморозь, иней).

Одной из самых распространенных форм являются сталактиты, т. е. сосульки. Они растут по всему миру: на поверхности Земли, в пещерах. Этот вид льда образуется путем стекания капель воды при разнице температур около нуля градусов в осенне-весенний период.

Образования в виде ледяных полос, появляющихся по краям водоемов, на границе воды и воздуха, а также по краю луж, называются ледяными заберегами.

Лед может образовываться в пористых грунтах в виде волокнистых прожилок.

Свойства льда

Вещество может находиться в разных состояниях. Исходя из этого, возникает вопрос: а какое свойство льда проявляется в том или ином состоянии?

Ученые выделяют физические и механические свойства. Каждое из них имеет свои особенности.

Физические свойства

К физическим свойствам льда относят:

  1. Плотность. В физике неоднородная среда представлена пределом отношения массы вещества самой среды к объему, в котором она заключена. Плотность воды, как и других веществ, является функцией температур и давления. Обычно в расчетах используют постоянную плотность воды, равную 1000 кг/м 3 . Более точный показатель плотности учитывается только тогда, когда необходимо очень точно провести расчеты ввиду важности получаемого результата разности плотностей.
    При проведении расчетов плотности льда учитывается, какая вода стала льдом: как известно, плотность соленой воды выше, чем дистиллированной.
  2. Температура воды. Обычно кристаллизация воды происходит при температуре ноль градусов. Процессы замерзания происходят скачками с выделением теплоты. Обратный процесс (таяние) происходит при поглощении того же количества тепла, которое было выделено, но без скачков, а постепенно.
    В природе встречаются условия, при которых происходит переохлаждение воды, но она не замерзает. Некоторые реки сохраняют жидкое состояние воды даже при температуре -2 градуса.
  3. Теплоемкость. Это количество теплоты, которое поглощается при нагревании тела на каждый градус. Есть удельная теплоемкость, которая характеризуется количеством теплоты, необходимой для нагрева килограмма дистиллированной воды на один градус.
  4. Сжимаемость. Еще одно физическое свойство снега и льда – сжимаемость, влияющая на уменьшение объема под воздействием повышенного внешнего давления. Обратная величина называется упругостью.
  5. Прочность льда.
  6. Цвет льда. Это свойство зависит от поглощения света и рассеивания лучей, а также от количества примесей в замерзшей воде. Речной и озерный лед без посторонних примесей виден в нежно-голубом свете. Морской лед может быть совершенно другим: голубым, зеленым, синим, белым, коричневым, иметь стальной оттенок. Иногда можно увидеть черный лед. Такой цвет он приобретает из-за большого количества минералов и различных органических примесей.

Механические свойства льда

Механические свойства льда и воды определяются сопротивлением воздействию внешней среды по отношению к единице площади. Механические свойства зависят от структуры, солености, температуры и пористости.

Лед – это упругое, вязкое, пластичное образование, но бывают условия, при которых он становится твердым и очень хрупким.

Морской лед и пресноводный различаются: первый намного пластичнее и менее прочный.

При прохождении кораблей обязательно учитываются механические свойства льда. Также это важно при использовании ледяных дорог, переправ и не только.

Читать еще:  Кто нарисовал картину утро. Утро в сосновом бору

Вода, снег и лед обладают схожими свойствами, которые определяют характеристики вещества. Но в то же время на эти показания влияют и многие другие факторы: температура окружающей среды, примеси в твердом веществе, а также исходный состав жидкости. Лед — это одно из самых интересных веществ на Земле.

Лед: какой он бывает — на Земле и вне ее

«Лёд — это замороженная вода» — истина, известная каждому человеку. Ситуация обоюдоострая, поскольку вода также может быть растаявшим льдом. Если брать за основу подтвержденное знание о реальных ледниковых периодах в истории Земли, то можно предположить, что все воды — это растаявшие ледники. К тому же, вода и лёд имеют одну химическую запись: H2O. Даже определение льда однозначно — вода в твердом агрегатном состоянии.
Плотность меньше плотности воды — и это одна из важных загадок природы. Вода в твердом состоянии намного легче, чем в текучем, что попирает физические явления. Впрочем, это единственное исключение из правил.

Структура

Замерзание и таяние — процесс самостоятельной очистки воды. Природный лёд, как правило, значительно чище воды. Растущие кристаллы создают собственную решетку, вытесняя посторонние примеси обратно в жидкость.

Кристаллическая решетка напоминает соты или даже структуру драгоценного камня. Каждая молекула окружена другими, в результате формируется водородная связь. Отсюда и сетчатая структура, что приводит к понижению плотности. Известно 14 видов замершей воды. Большинство отличающихся структур образуются только при экстремально низких температурах. Потому и не встречаются на Земле, а лишь в Космосе.

Лёд оказывает большое влияние на условия существования флоры, фауны и даже деятельность человека. Именно он образует на воде плавучий покров, своеобразно защищая подводную жизнь от гибели.

Благодаря свой структуре, кристаллизованный лёд способен сохранять информацию обо всем, включая флору и фауну (он просто её замораживает), также данные о том, при каких условиях произошло замерзание. На это влияют слоистая структура льда. Именно так удалось выявить ДНК мамонтов, к примеру. Слои ледников детектируются разными годами и даже эпохами. Так было выяснено, что теплыми годами для Арктики были 1550 и 1930.

Молекулы льда кристаллизуются в форме двойной спирали при воздействии низких минусовых температур и высокого давления. При таких условиях ледяной кристалл напоминает структуру ДНК.

Происхождение

Лёд образуется на поверхности воды, сковывая её течение при понижении температуры воздуха. Начальная температура льда всего 0°С — этого достаточно, чтобы начали появляться иголки, которые образуют кристаллизованную чашу. То есть в основе происхождения льда лежит вода и минусовая температура.

Существует несколько районов на Земле, где в слоях залегает вечная мерзлота. Грунтовый лёд в таких местах оттаивает лишь на незначительную глубину. Ниже встречается подземный лёд, который также имеет два вида: современный и ископаемый. 10% процентов планеты покрыто ледниковым льдом. А на поверхности морей и океанов образуется морской лёд — но не везде, существует пресноводный вид и множество других. Все они имеют различное происхождение, в зависимости от типа воды.

Фазы льда

Достоверно неизвестно точное количество фаз льда. На сегодняшний день выявлено всего 14 основных разновидностей, некоторые из которых являются внеземными.

  1. Аморфный лёд — не имеет кристаллической структуры, но существует три дополнительные формы по плотности: LDA— низкая, HDA — средняя (формируется под атмосферным давлением) и VHDA — очень высокая.
  2. Лёд 1h — обычный лёд, существующий на поверхности планеты.
  3. Лёд 1c — кубический лёд (похож по структуре на алмаз). Температура возникновения от -133°C до -123°C. При нагреве переходит в предыдущую стадию.
  4. Лёд 2 — тригональный (температура сжатия -83 °C до -63 °C). При нагреве переходит в следующую стадию.
  5. Лёд 3 — тетрагональный (образуется при −23 °C и давлении 300 МПа). Плотность выше, чем у воды.
  6. Лёд 4 — метастабильный тригональный вид.
  7. Лёд 5 — моноклинный (образуется охлаждении воды до -20 °C и давлении 500 МПа), сложная структура.
  8. Лёд 6 — тетрагональный (возникает при охлаждении -3 °C и давлении 1,1 ГПа).
  9. Лёд 7 — кубический (образуется с нарушением атомов водорода).
  10. Лёд 8 — появляется при охлаждении предыдущего типа, атомы фиксируются.
  11. Лёд 9 — тетрагональный метастабильный вид (из льда 3 при охлаждении -65°C до -108°C). Высокая плотность, но ниже, чем у воды.
  12. Лёд 10 — симметричный вид под давлением до 70 ГПа.
  13. Лёд 11 — ромбический тип.
  14. Лёд 12 — тетрагональный метастабильный лёд с плотной решеткой (нагрев аморфного льда при -196°C до -90°C, но потребуется давление в 810 МПа).

Кроме того, ведутся исследования в других фазах. Основное отличие заключается именно в химической структуре и условиях для образования льдов.

Классификация

Разновидности льда характеризуют сразу по нескольким признакам: форма, возраст, происхождение, подвижность и ряду других.

По происхождению бывают следующими:

  • морские;
  • пресноводные (они же речные);
  • материковые (они же глетчерные).

Процесс образования достаточно прост: морские — в море, речные — в реках, могут выносить потоком в открытое морское пространство. Материковые — плавающие ледники, их обломки и, в особенности, айсберги.

Следующий признак — возраст, здесь виды льда различаются так:

  • молодой лёд (иглы, сало, снежура и многое другое);
  • поверхностный — кристаллический лёд;
  • нилас — эластичная ледяная корка на поверхности морской воды;
  • серый (15 см толщины) — вода с примесями, такой вид не является полностью очищенным;
  • белый (более 30 см) — процесс очищения полностью произошел;
  • 1-летний, 2-летний — не тающий в течение этого периода;
  • многолетний (либо паковый — арктический, промерзает не менее, чем на 3 метра);
  • вечный лёд — не тающий совсем, такие ледники залегают глубоко под землей.
Читать еще:  Тв программа на 31 декабря.

Различаются они по тому, как двигаются. Есть неподвижные — вроде ледяного покрова Арктики и Антарктики. Это сплошной покров, закрепленный на суше, либо примерзший к чему-то и не тающий. Он буквально припаивается, постепенно разрастаясь — отсюда ещё одно название «припай». Также есть стамух (фактически айсберг, севший на мель) и береговой вал.

Следующий вид — плавучий, дрейфующий тип льдов. Он постоянно движется по воде, передвигаясь под внешним влиянием — ветром и течениями. Такая форма преобладает, они дополнительно классифицируются по размерам: на ледяные поля разного размера, мелкобитный лёд.

Материковые появляются в результате сколов массивных частей припая. Край называется ледниковым барьером, а съехавший и плавающий — языком. К ним же относятся айсберги (толщина льда достигает десятков метров), острова льда (свыше 30км в диаметре).

Свойства

Основная масса бесцветна. Совсем прозрачный лёд характерен для пресноводных водоемов. Ярчайший пример — лёд на озере Байкал. Намерзшие глыбы абсолютно чистые и прозрачные. Морской и речной обычно имеют белый цвет с легким синеватым оттенком, а речной также имеет — грязный серый цвет, к тому же такие льды быстро тают.

Цвет льда напрямую зависит от окружающей обстановки. Так, лёд в воде кажется синим, потому что принято считать, что вода имеет именно такой оттенок.

Следующее свойство — блеск, похожий на стекло. Он также может порезать кожу человека. Основные массы не имеют спаек, вода буквально замерзает в монолитную массу без швов.

Минерал насчитывает более 14 модификаций, уже приведенных выше. На Земле встречается только два первых вида. Связано это с экстремально низкими температурами и высоким давлением, что свойственно другим планетам. Температура льда также может различаться: на вершинах гор она равна 0 градусов, тогда как самыми теплыми являются гренландские — 28 градусов.

Другая особенность — расширение массы замерзающий воды при образовании кристаллической решетки. Именно это свойство спасает флору и фауну во время зимы, не позволяя промерзать водоемам до самого дна. Возможно образование сосулек — длинных ледяных полотен до самого дна, но они никак не влияют на окружение.

Уникальность талой воды также не заканчивается на молекулярном уровне. Так, к примеру, талая вода будет довольно чистой и пригодной для питья. Поскольку образование льда является естественным очистителем для воды.

Существуют планеты, которые полностью покрывает горячий лед (например, Gliese 436 b). Разумеется, всё на уровне предположений — никто достоверно не знает. Предположительная температура на приведенной планете держится в 300°C, но сила давления настолько высока, что воду попросту сжимает и удерживает в твердом состоянии.

Различается удельная теплоемкость воды и льда в зависимости от температуры в интервале от 0 до -100°C. Снижение приводит к тому, что параметр значительно уменьшается, но теплопроводность и плотность, напротив, возрастает. Теплоемкость льда меньше в два раза, чем у воды, потому он может оставаться холодным, даже при высоких температурах (пример — гренландские теплые льды). Но их плотность будет близка к массе воды.

Свойства воды: «Обыкновенные чудеса» в нашей жизни. Физика и химия льда. Общие сведения

нагретого пламени, а во втором-то же самое количество теплоты исходит от сравнительно холодного железа.

Опыты показали, что никакой разницы в обоих случаях не существует, а потому теплота, рассматриваемая по отношению к ее способности нагревать тела и изменять их состояние, есть количество, подлежащее точному измерению, и не может представлять качественных отличий.

Расширение воды при замерзании.

Начиная с 4°Ц. до самой точки замерзания, вода при охлаждении расширяется, а когда она превращается в лед, расширение ее совершается быстро и внезапно. Лед, как известно, плавает на воде, потому что, вследствие расширения, он становится легче ее.

Сила, с которою происходит эт*о расширение воды при замерзании, огромна. Чтобы составить себе понятие об этой напряженности, сделаем опыт: вода наливается в железный сосуд, стенки которого имеют полдюйма толщины. Количество воды не велико, но она наполняет сосуд; после этого,он плотно закрывается крышкой, навинчиваемой на его шейку. Б^ерем и другой такой же сосуд. Погрузим оба сосуда в охлаждающую смесь. Они постепенно охладевают, вода внутри них доходит до своей точки наибольшей плотности, и без сомнения в этот момент не совершенно наполняет бутылки, а оставляет внутри небольшую пустоту. Но скоро сжатие воды прекращается, наступает расширение; пустота медленно заполняется; вода постепенно переходит из жидкого состояния h твердое, причем объем ее увеличивается, и этому увеличению объема сопротивляются стенки железного сосуда. Но их сопротивление бессильно перед молекулярными силами: молекулы-это замаскированные гиганты. Раздается треск: бутылка разрывается кристаллизующимися частицами; то же происходит и с другою бутылкой.

В другом опыте с громким взрывом лопались толстые стенки артиллерийской бомбы: бомба была наполнена водою, туго завинчена и поставлена в кадку с охлаждающей смесью. При выполнении этого опыта надо покрывать кадку толстым холстом: когда я не делал этого, обломки бомбы подбрасывало под потолок.

Читать еще:  Муж айседоры дункан. Айседора Дункан

Теперь вам понятно действие мороза на водопроводные трубы в домах. Обычно думают, что разрыв труб происходит во время таяния льда в трубах *), но на самом деле это происходит во время замерзания:

Подозреваю, что в результате того, что лед легче незамерзшей воды, первые кристаллы льда всплывают, комбинируясь друг с другом и в верхней части замерзание происходит быстрее.

Стоит отметить, что с другой стороны, есть конвекция, которая будет действовать ровно наоборот, поднимая более теплую воду наверх, и препятствуя там ледообразованию. Однако мне кажется, что при медленном равномерном промерзании этот эффект нивелируется.

Как запаять ПОЛНУЮ банку с водой?

Согласен. Идеальное запаивание тут не получается. Так, наляпывание припоя сверху, лишь бы вода не вытекала. Кстати, в месте пайки действительно образуется водяной пар при нагреве паяльником.

Очевидно, что объем воды вернется к первоначальному. Однако за счет чего – тут есть предположение, что вдавится не донышко (оно сильно сводообразное стало), а боковая стенка банки.

Если бы баночка была абсолютно герметична – тогда да, вдавилась бы боковая стенка. А так все равно воздух проникает. Поэтому после разморозки получается, что сверху появляется воздух, во время заморозки дно выдавливается еще сильнее, и так далее, пока совсем его не вырвет.

P. S. Сегодня разморозил банку, и поставил на второе замораживание. Посмотрим, что из этого получится.

  • 1. пробовал запаять не выходит! смог только заварить полуавтоматом (электро–сваркой) заморозил, разморозил дно не втянулось подумал из–за воздуха, взял другую банку впаял пипку от камеры проверил воздухом на 2 атм утечек нет залил воды воздуха нет! заморозил разморозил бока почти не втянулись проверил через час появилось избыточное давление и мне кажется что при заморозке и разморозке воды выделяется растворенный в ней воздух потому и бока не втягиваются
    2, вода кристаллизуется сверху (река зимой, бочка с водой) лед легче воды, думаю, что и холодно–проводность.
  • банка такая же как и ваша из–под молока произошло все анологично как у вас после разморозки слегка спало напряжение размораживал при комнатной температуре мне кажется стоит учитывать температуру воды в моем случае это 7 градусов, а комнатная 25 градусов тоже наверное влияет. сейчас проверяю что будет если банки положить набок швом к верху и швом к низу!
  • > 1. Почему замерзающая вода выдавливается именно нижнюю крышку, и практически не влияет на верхнюю?
    Пологаю что процесс заморозки, учитывая то что банка находилась в пластиковой таре, протикал не ровномерно. Первым стала замерзать верхняя часть банки потому как она была ближе к холоду нижняя же часть нахоидась там где между стенками пластика и ж. банки находился воздух чуть теплее чем с верху. Далее обледенение внутр верхней части банки придовало ей дополнительную прочность но превращаясь в лед вода расширялась и давила на жидкость в нижней части ж. банки.
  • > 1. Почему замерзающая вода выдавливается именно нижнюю крышку, и практически не влияет на верхнюю?

    1. лед образуется сверху. это обусловлено тем, что остывающая (а не замерзающая вода как пишет автор) поднимается к верху за счёт того что при остывании (от 4 градусов до 0) плотность уменьшается.
    2. остывающая (а не замерзающая вода как пишет автор) за счет увеличения обьема давит уже не на крышку а на ледяную «шайбу» которая распределяет усилие по всей площади крышки равномерно. наиболее «слабая» часть крышки (от центра) подвергается такому же давлению что и наиболее «сильные» части (возле боковых стенок). вследствие этого усилие создаваемое остывающей водой гаситься «сильной» частью крышки. в нижней же части льда нет, вода давит на «сильные» части, они не прогибаются, общее давление переходит на «слабые» части, не поглощаясь «сильными» (потому что усилие через воду передается во всех направлениях). както вот так.

  • Тов. Ученые! А может кто подскажет какое давление оказывает замерзающая вода и образовавшийся лед на стенки сосуда?
  • Не мудрите. Продавило низ, потому что гравитация работает и на эту банку + то, что с низу самая большая плотность воды при замерзании, по-этому не верху банально не было столько же массы для расширения, сколько ее было снизу.

    Давление вычислит можно по p1/p2 = ((n вода)/(n лед))*T1/T2

    Выдавится всегда нижняя крышка, разве что банка будет замерзать в условии постоянного вращения. Или в условии отсутствия воздействия гравитации.

    Что-бы получить температуру льда для уравнения выше, мерим температуру банки, Q1=Q2, Q1=c*m*dT (банка)
    Q2=c2*m2*dT2 + dL*m + c3*m2*dT3
    вода охлаждается + вода кристаллизуется + лед охлаждается
    dT3 = (c*m*dT-c2*m2*dT2-dL*m)/(c3*m2)

    Это будет изменение температуры льда.
    Подставите его в T=0+273-dT3 — будет температура Т2.
    Температура T1 — воды — термометром когда вода войдет в термодинамическое равновесие с банкой.

    P2 — давление льда, p1=pa+((m*9.8)/S(дна))

    Вроде бы и все.
    Получите p2, который будет равен величине давления, необходимого что-бы выдавить вашу банку на сколько-то.

    В упрощенной форме эта задача выглядит так, и результат не абсолютно точен. Для точности тут надо было-бы проинтегрировать, да думаю это перебор.

    Источники:

    http://fb.ru/article/367931/svoystva-lda-stroenie-mehanicheskie-i-fizicheskie-svoystva-lda
    http://vodavomne.ru/svojstva-vody/led
    http://sokurnso.ru/novostrojjka/svoistva-vody-obyknovennye-chudesa-v-nashei-zhizni-fizika-i-himiya-lda-obshchie/

  • Ссылка на основную публикацию
    Статьи c упоминанием слов:

    Adblock
    detector