Дроби. Умножение и деление дробей
Умножение и деление обыкновенных дробей
Умножение дробей
Чтобы умножить одну обыкновенную дробь на другую, нужно умножить числитель первой дроби на числитель второй дроби (это произведение будет числителем результата), и знаменатель первой дроби на знаменатель второй дроби (это произведение будет знаменателем результата):
Правило умножения обыкновенных дробей в виде формулы:
Для упрощения вычислений, ещё до выполнения умножения дробей, можно сокращать любой множитель числителя с любым множителем знаменателя на общий делитель.
При сокращении числителей со знаменателями их обычно зачёркивают и рядом пишут число, которое получилось после сокращения:
В примере мы сократили 25 и 20 на общий делитель – 5, а 27 и 12 на общий делитель – 3.
Умножение дроби на натуральное число
Чтобы умножить натуральное число на обыкновенную дробь или наоборот – умножить дробь на натуральное число, можно числитель дроби умножить на это натуральное число, а знаменатель оставить без изменений:
Деление дробей
При делении одной обыкновенной дроби на другую, нужно перевернуть вторую дробь и после этого умножить первую дробь на вторую, т. е. нужно числитель первой дроби умножить на знаменатель второй (это произведение будет числителем результата), а знаменатель первой дроби умножить на числитель второй (это произведение будет знаменателем результата):
Для проверки правильности выполненного деления, можно полученное частное умножить на делитель и посмотреть, получится ли у нас делимое, если делимое получено верно, значит деление было выполнено правильно:
Теперь осталось только сократить полученную дробь:
Правило деления обыкновенных дробей в виде формулы:
Иногда могут встретиться записи такого вида:
Так как черта дроби означает деление, то такие записи можно переписать в более удобном виде:
В записях, в которых черта дроби используется несколько раз, знак = ставится у черты дроби, означающей последнее по порядку действие деления:
Деление дроби на натуральное число
Чтобы обыкновенную дробь разделить на натуральное число или наоборот – натуральное число разделить на дробь, нужно просто представить натуральное число в виде дроби.
Калькулятор умножения и деления дробей
Данный калькулятор поможет вам выполнить умножение или деление обыкновенных дробей. Просто введите две дроби, выберите нужную операцию и нажмите кнопку Вычислить .
Умножение и деление дробей
В прошлый раз мы научились складывать и вычитать дроби (см. урок «Сложение и вычитание дробей»). Наиболее сложным моментом в тех действиях было приведение дробей к общему знаменателю.
Теперь настала пора разобраться с умножением и делением. Хорошая новость состоит в том, что эти операции выполняются даже проще, чем сложение и вычитание. Для начала рассмотрим простейший случай, когда есть две положительные дроби без выделенной целой части.
Чтобы умножить две дроби , надо отдельно умножить их числители и знаменатели. Первое число будет числителем новой дроби, а второе — знаменателем.
Чтобы разделить две дроби , надо первую дробь умножить на «перевернутую» вторую.
Из определения следует, что деление дробей сводится к умножению. Чтобы «перевернуть» дробь, достаточно поменять местами числитель и знаменатель. Поэтому весь урок мы будем рассматривать в основном умножение.
В результате умножения может возникнуть (и зачастую действительно возникает) сократимая дробь — ее, разумеется, надо сократить. Если после всех сокращений дробь оказалась неправильной, в ней следует выделить целую часть. Но чего точно не будет при умножении, так это приведения к общему знаменателю: никаких методов «крест-накрест», наибольших множителей и наименьших общих кратных.
Задача. Найдите значение выражения:
По определению имеем:
Умножение дробей с целой частью и отрицательных дробей
Если в дробях присутствует целая часть, их надо перевести в неправильные — и только затем умножать по схемам, изложенным выше.
Если в числителе дроби, в знаменателе или перед ней стоит минус, его можно вынести за пределы умножения или вообще убрать по следующим правилам:
- Плюс на минус дает минус;
- Минус на минус дает плюс.
До сих пор эти правила встречались только при сложении и вычитании отрицательных дробей, когда требовалось избавиться от целой части. Для произведения их можно обобщить, чтобы «сжигать» сразу несколько минусов:
- Вычеркиваем минусы парами до тех пор, пока они полностью не исчезнут. В крайнем случае, один минус может выжить — тот, которому не нашлось пары;
- Если минусов не осталось, операция выполнена — можно приступать к умножению. Если же последний минус не зачеркнут, поскольку ему не нашлось пары, выносим его за пределы умножения. Получится отрицательная дробь.
Задача. Найдите значение выражения:
Все дроби переводим в неправильные, а затем выносим минусы за пределы умножения. То, что осталось, умножаем по обычным правилам. Получаем:
Еще раз напомню, что минус, который стоит перед дробью с выделенной целой частью, относится именно ко всей дроби, а не только к ее целой части (это касается двух последних примеров).
Также обратите внимание на отрицательные числа: при умножении они заключаются в скобки. Это сделано для того, чтобы отделить минусы от знаков умножения и сделать всю запись более аккуратной.
Сокращение дробей «на лету»
Умножение — весьма трудоемкая операция. Числа здесь получаются довольно большие, и чтобы упростить задачу, можно попробовать сократить дробь еще до умножения. Ведь по существу, числители и знаменатели дробей — это обычные множители, и, следовательно, их можно сокращать, используя основное свойство дроби. Взгляните на примеры:
Задача. Найдите значение выражения:
По определению имеем:
Во всех примерах красным цветом отмечены числа, которые подверглись сокращению, и то, что от них осталось.
Обратите внимание: в первом случае множители сократились полностью. На их месте остались единицы, которые, вообще говоря, можно не писать. Во втором примере полного сокращения добиться не удалось, но суммарный объем вычислений все равно уменьшился.
Однако ни в коем случае не используйте этот прием при сложении и вычитании дробей! Да, иногда там встречаются похожие числа, которые так и хочется сократить. Вот, посмотрите:
Так делать нельзя!
Ошибка возникает из-за того, что при сложении в числителе дроби появляется сумма, а не произведение чисел. Следовательно, применять основное свойство дроби нельзя, поскольку в этом свойстве речь идет именно об умножении чисел.
Других оснований для сокращения дробей просто не существует, поэтому правильное решение предыдущей задачи выглядит так:
Как видите, правильный ответ оказался не таким красивым. В общем, будьте внимательны.
Умножение и деление алгебраических дробей
В этой статье мы продолжаем изучение основных действий, которые можно выполнять с алгебраическими дробями. Здесь мы рассмотрим умножение и деление: сначала выведем нужные правила, а затем проиллюстрируем их решениями задач.
Как правильно делить и умножать алгебраические дроби
Чтобы выполнить умножение алгебраических дробей или разделить одну дробь на другую, нам нужно использовать те же правила, что и для обыкновенных дробей. Вспомним их формулировки.
Когда нам надо умножить одну обыкновенную дробь на другую, мы выполняем отдельно умножение числителей и отдельно знаменателей, после чего записываем итоговую дробь, расставив по местам соответствующие произведения. Пример такого вычисления:
2 3 · 4 7 = 2 · 4 3 · 7 = 8 21
А когда нам надо разделить обыкновенные дроби, мы делаем это с помощью умножения на дробь, обратную делителю, например:
2 3 : 7 11 = 2 3 · 11 7 = 22 7 = 1 1 21
Умножение и деление алгебраических дробей выполняется в соответствии с теми же принципами. Сформулируем правило:
Чтобы перемножить две и более алгебраические дроби, нужно перемножить отдельно числители и знаменатели. Результатом будет дробь, в числителе которой будет стоять произведение числителей, а в знаменателе – произведение знаменателей.
В буквенном виде правило можно записать как a b · c d = a · c b · d . Здесь a , b , c и d будут представлять из себя определенные многочлены, причем b и d не могут быть нулевыми.
Для того чтобы разделить одну алгебраическую дробь на другую, нужно выполнить умножение первой дроби на дробь, обратную второй.
Это правило можно также записать как a b : c d = a b · d c = a · d b · c . Буквы a , b , c и d здесь означают многочлены, из которых a , b , c и d не могут быть нулевыми.
Отдельно остановимся на том, что такое обратная алгебраическая дробь. Она представляет из себя такую дробь, которая при умножении на исходную дает в итоге единицу. То есть такие дроби будут аналогичны взаимно обратным числам. Иначе можно сказать, что обратная алгебраическая дробь состоит из таких же значений, что и исходная, однако числитель и знаменатель у нее меняются местами. Так, по отношению к дроби a · b + 1 a 3 дробь a 3 a · b + 1 будет обратной.
Решение задач на умножение и деление алгебраических дробей
В этом пункте мы посмотрим, как правильно применять озвученные выше правила на практике. Начнем с простого и наглядного примера.
Условие: умножьте дробь 1 x + y на 3 · x · y x 2 + 5 , а потом разделите одну дробь на другую.
Решение
Сначала выполним умножение. Согласно правилу, нужно отдельно перемножить числители и знаменатели:
1 x + y · 3 · x · y x 2 + 5 = 1 · 3 · x · y ( x + y ) · ( x 2 + 5 )
Мы получили новый многочлен, который нужно привести к стандартному виду. Заканчиваем вычисления:
1 · 3 · x · y ( x + y ) · ( x 2 + 5 ) = 3 · x · y x 3 + 5 · x + x 2 · y + 5 · y
Теперь посмотрим, как правильно разделить одну дробь на другую. По правилу нам надо заменить это действие умножением на обратную дробь x 2 + 5 3 · x · y :
1 x + y : 3 · x · y x 2 + 5 = 1 x + y · x 2 + 5 3 · x · y
Приведем полученную дробь к стандартному виду:
1 x + y · x 2 + 5 3 · x · y = 1 · x 2 + 5 ( x + y ) · 3 · x · y = x 2 + 5 3 · x 2 · y + 3 · x · y 2
Ответ: 1 x + y · 3 · x · y x 2 + 5 = 3 · x · y x 3 + 5 · x + x 2 · y + 5 · y ; 1 x + y : 3 · x · y x 2 + 5 = x 2 + 5 3 · x 2 · y + 3 · x · y 2 .
Довольно часто в процессе деления и умножения обыкновенных дробей получаются результаты, которые можно сократить, например, 2 9 · 3 8 = 6 72 = 1 12 . Когда мы выполняем эти действия с алгебраическими дробями, мы также можем получить сократимые результаты. Для этого полезно предварительно разложить числитель и знаменатель исходного многочлена на отдельные множители. Если нужно, перечитайте статью о том, как правильно это делать. Разберем пример задачи, в которой нужно будет выполнить сокращение дробей.
Условие: перемножьте дроби x 2 + 2 · x + 1 18 · x 3 и 6 · x x 2 – 1 .
Решение
Перед тем, как вычислять произведение, разложим на отдельные множители числитель первой исходной дроби и знаменатель второй. Для этого нам потребуются формулы сокращенного умножения. Вычисляем:
x 2 + 2 · x + 1 18 · x 3 · 6 · x x 2 – 1 = x + 1 2 18 · x 3 · 6 · x ( x – 1 ) · ( x + 1 ) = x + 1 2 · 6 · x 18 · x 3 · x – 1 · x + 1
У нас получилась дробь, которую можно сократить:
x + 1 2 · 6 · x 18 · x 3 · x – 1 · x + 1 = x + 1 3 · x 2 · ( x – 1 )
О том, как это делается, мы писали в статье, посвященной сокращению алгебраических дробей.
Перемножив одночлен и многочлен в знаменателе, мы получим нужный нам результат:
x + 1 3 · x 2 · ( x – 1 ) = x + 1 3 · x 3 – 3 · x 2
Вот запись всего решения без пояснений:
x 2 + 2 · x + 1 18 · x 3 · 6 · x x 2 – 1 = x + 1 2 18 · x 3 · 6 · x ( x – 1 ) · ( x + 1 ) = x + 1 2 · 6 · x 18 · x 3 · x – 1 · x + 1 = = x + 1 3 · x 2 · ( x – 1 ) = x + 1 3 · x 3 – 3 · x 2
Ответ: x 2 + 2 · x + 1 18 · x 3 · 6 · x x 2 – 1 = x + 1 3 · x 3 – 3 · x 2 .
В некоторых случаях исходные дроби перед умножением или делением удобно преобразовать, чтобы дальнейшие вычисления стали быстрее и проще.
Условие: разделите 2 1 7 · x – 1 на 12 · x 7 – x .
Решение: начнем с упрощения алгебраической дроби 2 1 7 · x – 1 , чтобы избавиться от дробного коэффициента. Для этого умножим обе части дроби на семь (это действие возможно благодаря основному свойству алгебраической дроби). В итоге у нас получится следующее:
2 1 7 · x – 1 = 7 · 2 7 · 1 7 · x – 1 = 14 x – 7
Видим, что знаменатель дроби 12 · x 7 – x , на которую нам нужно разделить первую дробь, и знаменатель получившейся дроби являются противоположными друг другу выражениями. Изменив знаки числителя и знаменателя 12 · x 7 – x , получим 12 · x 7 – x = – 12 · x x – 7 .
После всех преобразований можем наконец перейти непосредственно к делению алгебраических дробей:
2 1 7 · x – 1 : 12 · x 7 – x = 14 x – 7 : – 12 · x x – 7 = 14 x – 7 · x – 7 – 12 · x = 14 · x – 7 x – 7 · – 12 · x = = 14 – 12 · x = 2 · 7 – 2 · 2 · 3 · x = 7 – 6 · x = – 7 6 · x
Ответ: 2 1 7 · x – 1 : 12 · x 7 – x = – 7 6 · x .
Как умножить или разделить алгебраическую дробь на многочлен
Чтобы выполнить такое действие, мы можем воспользоваться теми же правилами, что мы приводили выше. Предварительно нужно представить многочлен в виде алгебраической дроби с единицей в знаменателе. Это действие аналогично преобразованию натурального числа в обыкновенную дробь. Например, можно заменить многочлен x 2 + x − 4 на x 2 + x − 4 1 . Полученные выражения будут тождественно равны.
Условие: разделите алгебраическую дробь на многочлен x + 4 5 · x · y : x 2 – 16 .
Решение
Начнем с замены многочлена дробью, далее действуем согласно основному правилу.
x + 4 5 · x · y : x 2 – 16 = x + 4 5 · x · y : x 2 – 16 1 = x + 4 5 · x · y · 1 x 2 – 16 = = x + 4 5 · x · y · 1 ( x – 4 ) · x + 4 = ( x + 4 ) · 1 5 · x · y · ( x – 4 ) · ( x + 4 ) = 1 5 · x · y · x – 4 = = 1 5 · x 2 · y – 20 · x · y
Ответ: x + 4 5 · x · y : x 2 – 16 = 1 5 · x 2 · y – 20 · x · y .
Источники:
http://naobumium.info/arifmetika/obyknovennye_drobi7.php
http://www.berdov.com/docs/fraction/multiplication_division/
http://zaochnik.com/spravochnik/matematika/vyrazhenija/umnozhenie-i-delenie-algebraicheskih-drobej/